
Flora Generation and Evolution Algorithm for Virtual

Environments

Carlos Mora, Sandra Jardim

Smart Cities Research Center

Polytechnic Institute of Tomar

Tomar, Portugal

Jorge Valente,

Undergraduate Student

Polytechnic Institute of Tomar

Tomar, Portugal

Abstract — A crucial aspect to game development is the ability to

establish the player emersion in a simulated and virtual world,

presenting engaging content and maximizing the gaming

experience. The demand for new and hand-customized content

keeps increasing, in playable maps that are ever expanding in

size, without compromising quality or differentiation. The usage

of Procedural Content Generation (PCG) allows computers to

generate game content and produce distinguishable and unique

instances amongst the ones generated allowing to better replicate

reality and deliver intricate systems without the costs and time

consumption of human intervention.

As a key element for the appeal of many games, natural life

exhibits both complex and distinguishable behaviors, from

species to species as well as from individual to individual.

Biodiversity is maintained by processes operating over broader

spatial and temporal scales, and as such, simulating plant

diversity is a process better suited to operate under PCG

algorithms.

In this study, we describe a procedural flora evolution algorithm

that can replicate a flora species life cycle for a practical 3D game

setting (Universe 51), using scientific knowledge to better

reproduce such intricate behaviors. We based some part our

approach on complex intelligence algorithms, as well as in some

original processes targeted at our project specificities. The

evolution algorithm starts with the end results of a flora

generation algorithm that can create millions of different flora

species based on selected biological parameters. This data is then

interpreted by the evolutionary algorithm, that uses these values

to determine each species survival chances in the surrounding

environment. Our results were able to replicate and

autonomously manage plant species life cycle, under a dynamic

environment with potentially varying conditions.

Keywords – procedural content generation; flora generation

algorithm; flora evolution algorithm; natural life simulation.

I. INTRODUCTION

Some natural phenomena, such as the survival of living
entities and the success of some species in each environment,
rely on Optimization and Search to overcome the constraints
that these environments impose on them [1]. This complex
optimization strategies make for compelling problems and are
one of the reasons of why some algorithms are inspired by
nature [1, 2].

Using Procedural Content Generation is an increasingly
popular method to develop game content. Vegetation can be
used in many games for a realistic and thus immersive look.

The presence of vegetation is not merely aesthetic; it may serve
as hiding place, as raw material for inventive players, to direct
a player towards a certain direction or reference the climate
surrounding the player and lead to changes in gameplay [3].

In this paper, we researched some of the most relevant
information available, and best practices on Procedural
Generation Technics, to develop a Flora Generation and
Evolution Algorithm, to be applied on a real-world application,
an in-development game named Universe 51, that allows for
the exploration of +25 million planets in photo quality
graphics. To do so, we opted to separate the procedure into two
main algorithms: the first would handle flora species
generation, and insert the data into an SQL database, and the
second would use the generated species to populate an existing
world, control how individual flora specimens would behave in
the surrounding environment as well as propagate and colonize
new areas, simulating the natural processes with real scientific
basis.

II. BASE ASSUMPTIONS

A. Flora characteristics, dispersal, and Fitness

In Nature, species survival often depends on their ability to
adapt in various ways, whether to find food quickly or avoid
predation. These are typically Optimization/Search problems
that give their offspring the best chance to survive and thrive
[1].

A major pressuring force in species survival is competition,
which can be either between different species (interspecific) or
between plants of the same species (intraspecific). To evaluate
and understand competition [4], studies in the past two
decades, have concluded that intraspecific competition appears
to be significantly stronger than interspecific competition for
most pairs of co-occurring species. Additionally, in ~30% of
the cases analyzed, the effect of intraspecific competition was
negative and the interspecific effect positive, a situation which
promotes coexistence between plants of different species.
Cases in which both inter and intraspecific effects were
positive (~1%), or in which the intraspecific effect was
facilitative, but the interspecific effect was competitive (~1%),
were significantly rare [4].

As plants have a variety of modes to spread seeds, many
authors accept a classification into autochory and allochory [5].
Autochory refers to plants that spread by themselves, and
allochory means the plants spread through external forces [2,
3]. While it has become widely accepted that most plant

species are dispersed by more than one dispersal vector or
mode [5, 6], for the scope of this paper we will consider only
Autochory, as the software where the algorithm will be applied
does not presently include animals, wind sources or other
external forces that we could try to replicate in the algorithm.

Studies have found there are significant differences in
dispersal related to different environmental and topographic
conditions. For example, wind dispersal is more effective in an
alpine landscape, with heavy turbulences, compared to lowland
conditions [7]. Altitude has been known to be a significant
conditioner in many life aspects of flora species [8, 9]. As
altitude increases, the climate shifts toward more stressful
conditions for plant growth: lower mean temperatures, higher
precipitation, longer snow cover and, thus, a shorter growing
season, lower atmospheric pressure and higher solar radiation
that induces high temperatures at the ground level [8, 9].

Considering those factors, we introduced Altitude as a
limiting filter to the plant species generated, such as restricting
taller plants to lower altitude habitats. Studies observed that
trees cannot grow at high altitude, because of cold temperature
or lack of available moisture. This would somewhat mimic the
real world as plants that share the same habitat often exhibit
similar characteristics (i.e., morphology, reproduction, diaspore
dispersal) [10], generally identified as biological traits. This
kind of ‘‘filter’’ phenomenon occurs in nature and removes the
species that lack the necessary biological traits [9, 10].

Some species have also developed different strategies to
deal with specific survival optimization problems [1]. The
temperature surrounding the plant is known to affect the rate of
plant growth and development, with each species having a
specific temperature range comprising of a minimum,
maximum, and optimum temperature [11]. One other factor
that can limit plant growth is the concentration of CO2, but
since the pool of atmospheric CO2 is so large and mixed,
plants do not heavily compete for CO2 in our planet [12].
Using this kind of limitations can improve development of
game assets based on natural processes, enabling developers
with more levers of control to differentiate between different
planets or realities, creating a sense of novelty and discovery.

B. Procedural generation in games

Computer games are increasingly present in our modern
day lives, with hundreds of millions of players joining daily
and around the world, to play a variety of titles [3]. In 2020,
according to the US Entertainment Software Association
(ESA), 75% of all U.S. households have at least one person
who plays while, in total, 64% of all U.S. adults and 70% of
those under 18 regularly play video games [13]. In the context
of games and simulations, complex and realistic virtual worlds
gained more and more importance [14, 15].

In contrast to traditional methods of content production,
Procedural Content Generation for games (PCG) consists of the
application of computers algorithms to generate game content,
distinguishing between instances generated, and generating
entertaining instances for the players [3]. As a definition, [16]
classified procedural content generation as “any kind of
automatically generated asset based on a limited set of user-
defined input parameters”, sometimes also referred as

amplification algorithms. Usage of PCG techniques has been
around the game industry, in various forms, for decades [14].

Using PCG enables making complex game worlds, with
limited time, without putting a large burden on the game
content designers [3, 14]. Additionally, Procedural content may
increase the replayability of a game, by changing levels or
quests and offering new experiences in each new session [14,
15], effectively extending the life span of a title. PCG has also
influenced the creation of “serious games”, which converge a
learning experience in addition to the entertainment value in
classic games. Their value in education comes from the
changing environments that enable students not only repeat
knowledge they have learned, but also apply their abilities to
new and changing situations [15].

One aspect to retain is the tradeoff that occurs when
generating procedural content. When an algorithm returns a
particular outcome (e.g., a natural-looking forest), to be able to
generate more variations of assets, textures in higher
resolution, more detailed meshes or a denser planting, it
inevitably requires more processing power, more memory
and/or more storage [15]. For this reason, and depending on the
desired outcome, the developer has to establish a trade between
either performance or realism, to reach the optimal outcome for
the given system or the requirements for the virtual world [15].
Generating most types of game content necessitates from a
computer not only computational power, but also to access the
metadata and technical values of the generated instances [3].

Considering all this, and since virtual worlds may require
millions of square meters, it is indispensable to establish a way
to optimize performance for the rendering process. One
possible approach is described in [17] with the usage of Levels
of Details (LOD), which should be used to add more terrain
detail in important and frequently visited areas of a terrain that
are close to the user, and to reduce detail in less important
regions, e.g., in far mountain areas.

Lastly, Random Number Generators (RNG) can be used to
produce a deterministic and periodic sequence of (pseudo)
randomized numbers. While their functionality is referenced in
many publications dealing with PCG, not all researchers agree
with their omnipresence in PCG, with some authors defending
that pure random generation would result in chaos [15].

C. Complex intelligence algorithms:

In scientific and engineering areas, some problems require
the search for an optimal solution given a large and mutating
space. For these complex, nonlinear, or discrete optimization
challenges, existing traditional optimization algorithms, such as
Newton’s method and the Gradient Descent method, may have
a hard time finding a solution [2, 18]. For such cases, some
widely used intelligence algorithms include the particle swarm
optimization (PSO) algorithm [19], artificial bee colony (ABC)
algorithm [20], the flower pollination algorithm (FPA) [21],
and the Plant Propagation Algorithm (PPA) [1] provide
examples of some of the best solutions available.

Swarm intelligence algorithms, such as ABC and PSO, are
based on the interaction, communication, and cooperation of
organisms in individuals of a group. While behavior and
intelligence of everyone is somewhat limited and simple, it can

produce valuable overall capacity by interaction and
cooperation on the biological group [2, 22]. Different studies
on this area have been developed recently, focusing as well on
practical problems that are required to satisfy multiple
objectives, with conflicting natures towards each other, using
Multi-Objective Optimization algorithms [22].

We based some of our approach on the Artificial Flora (AF)
algorithm, as described in [2]. In developing the AF algorithm,
its authors took inspiration in the reproduction and the
migration of flora. In their study, the principle is that original
plants spread seeds in a possible radius around, with the
propagation distance considering the previous original plants.

In plant communities, competition for resources has been
associated with generating stress for plants, and to be important
for determining species distributions, as well as their evolution
[12]. The three main classes of resources that limit plant
growth are nutrients, water, and light, which are all resources
for which individual plants compete. Soil properties are
affected by numerous different nutrients, which limit plant
growth in different ways [12].

An environmental fitness variable can be used to determine
whether the seeds can survive or not, and consequently, if the
offspring plant cannot adapt to the environment, it will die. If a
seed survives, it will become original plants and spread seeds
[2]. Using these principles, through multi-generational
propagation, the flora will migrate to a more suitable area,
completing the task of finding the optimal growth environment
through the evolution, extinction, and rebirth of individual flora
specimens.

III. METHODS AND DEVELOPMENT

A. Flora Generation Algorithm

The starting point of the study was to create an algorithm
that, based on selected biological parameters, could generate
any desired number of new species, all different from one
another and insert their data into an SQL database. This
database contains all the pertinent biological data of the
species, such as: the optimal temperature and altitude, the
preferred gas or gases, the prohibited gas or gases, the
exclusive radius an individual would take, the maximal width
and height for the species, the longevity, the average
reproduction cycle, as well as, for visualization purposes,
information about the materials composing the species model.

Since we are dealing with a potential large volume of new
and alien species, we chose to base the attribution of these
parameters by generating random numbers, and limiting their
extremes with known and existing examples, to maintain some
degree of fidelity and familiarity with the player. Additionally,
the number generators were coupled with different functions,
that change the frequency of values to a pattern more closely
resembling for our reality. As an example, when determining
the optimal temperature, the algorithm is weighted to generate
less values close to the extremes.

As this algorithm is executed, some variables (preferred
and prohibited gas, and reproduction cycle) are attributed in the
beginning of the process, as they are the most difficult to
extrapolate from plant examples on our planet. After this, a

plant type is randomly established (from algae, moss, grass,
shrub, or tree), with the remaining variables being generated
(height, width, longevity, optimal temperature, optimal altitude,
etc.) loosely based on what is seen on our planet. This allows
us to create new and different species, while still maintaining
elements that hopefully are still recognizable and familiar to
players. By connecting characteristics like height and optimal
altitude to the type of plant, we can also maintain the filter
effect from altitude, that was mentioned in the introduction.

B. Flora Evolution Algorithm

After a planet is generated, a variable set of existing species
will be assigned to populate it from the established database.
For each species assigned, a new flora actor, with the
corresponding biological values, will be randomly located in
the map.

From the Flora Generation Algorithm), we can extract
several variables that will determine the species physiological
characteristics. Some of these have a direct effect on the in-
game plants, being directly translated into the assets as soon as
they are created. such as:

• Max width, Max Height and Exclusive radius –
assigned to define the plant mesh/model.

• Longevity – used to establish the Actor’s life span.

• Reproduction Cycle – applied directly to the algorithm.

• Flora Type – constrains the areas for initial spawning.

These are variables that have a direct effect on the plant
species progression/regression in the different “ecosystems”
observed in each distinct planet. Other species characteristics
are used to express their physiological needs, having a direct
correlation to the species presence or absence in the current
world, and as such, are used to determine the species survival
fitness. Specifically:

• Optimal temperature.

• Optimal altitude.

• Preferred atmospheric gas percentage.

• Prohibited atmospheric gas percentage.

All these variables will affect the species survivability, and
as so are considered when determining the fitness equation for
each different plant species.

In [2], the authors establish the individual fitness F using
the equation:

 𝐹 = |√
𝐹(𝑃𝑖,𝑗×𝑚

′)

𝑓𝑚𝑎𝑥
| × 𝑄𝑥

(𝑗×𝑚−1)
 () + = () ()

where 𝐹(𝑃𝑖,𝑗×𝑚
′) is the fitness for plant offspring in

position j, at interaction i, with m representing the number of
seeds that one plant can propagate in each interaction, fmax is
the maximum fitness of the flora in the current generation, and

𝑄𝑥
(𝑗×𝑚−1)

is a value between 0 and 1 where Qx is the selective
probability.

Since in this paper is determined fitness based on the
distance between the offspring and the original plant, we opted
to adapt this equation by changing how to determine the fitness
of current solution using the variables mentioned previously
(temperature, altitude, preferred gas percentage and prohibited
gas percentage). Since these variables vary wildly in order of
greatness (altitudes can vary in the thousands while gas
percentages at maximum vary in the tens), we decided to apply
some conversions to keep the potential score consistent.

Ultimately, the equation utilized to calculate the fitness
score F is:

 𝐹 = |√
𝑓𝑚𝑎𝑥−(∆𝑡+0,05∆𝑎+2,25𝑊𝑔+2𝐵𝑔)

𝑓𝑚𝑎𝑥
| × 𝑟𝑎𝑛𝑑(0, 1) () + = () ()

where fmax is the maximum fitness of the flora in the current
generation, ∆t is the difference between the surrounding
environmental temperature and the species Optimal
Temperature; ∆a is the difference between the local altitude
and the species Optimal Altitude; Wg is the prohibited gas
excess (difference between the max percentage tolerated and
the local percentage of the prohibited atmospheric gas), Bg is
the preferred gas deficit (difference between the local
percentage of the preferred atmospheric gas and the minimal
percentage required) and rand(0,1) denotes the independent
uniformly distributed number in (0,1).

Lastly, since our algorithm operates under the principle that
only successful offspring are generated, we shifted the selective
probability on the equation for a randomized element, that still
varies between 0 and 1, and which ensures that the
survivability does not rely strictly on the value of the fitness.
This allowed us to emulate that different specimens have each
its own fitness score, and even when in proximity they may
have different “environmental” pressures.

After estimating the fitness, each plant will generate
descendancy using the same propagation method as in [2], at a
distance D, from the original plant, utilizing the equation:

 𝐷 = 𝑑1 × 𝑟𝑎𝑛𝑑(0,1) + 𝑑2 × 𝑟𝑎𝑛𝑑(0,1) () + = () ()

Where d1 is the propagation distance of grandparent plant,
d2 is the propagation distance of the parent plant and rand(0,1)
denotes the independent uniformly distributed number in (0,1).

IV. RESULTS

The full study workflow consists in generating a desired
number of new species using the Flora Generation Algorithm,
thus creating a new set of species available to be used from that
point forward. The higher the number of species desired, the
bigger will be the response time necessary to generate all the
required information, with an average time obtained of around
11 seconds for every 5000 species generated.

Using then, the Flora Evolution Algorithm, we can simulate
a simplified life cycle for each specimen of each generated
plant species, using both information from the generation
algorithm and information from the location of each specimen,
regardless of any player interactions.

This way, the flora evolution algorithm works completely
independent from the player, managing the processes of
growth, reproduction, decay, and death, of each individual
specimen spawned into the world, independently from each
other. All the processes are determined according to the fitness
variable, calculated using the species and the environmental
characteristics. The following figure illustrates how some of
the described process develop in a life- cycle for a single plant
specimen:

Figure 1. Plant specimen progression, through different phases of

development.

From the image above we can observe a few different
events:

1. Two healthy plants, shortly after generation.

2. Plants after a few cycles of growth.

3. Plants near their max size. The one closest to the player
changed its model aspect to indicate a fitness
reduction.

4. The furthest plant (healthy) entered the propagation
phase and originated two new individuals (red
indicators).

5. The new plants grow.

6. One of the newest plants entered the exclusive radius
(white circle) of another and was ultimately eliminated
through competition.

The full process starts when plant specimens are generated,
with a shortened height (depending on the established growth
rate) and developing further through time if the conditions are
suitable for the species. During repeated time cycles, the
algorithm estimates the plant fitness, using (1) and oversees the
growth and development of the individual in relation to the
environment. As the plant and its model grows, so does the
exclusive radius (observable only during development, as a
white circle under the plant).

If the conditions are suitable, the plant only stops growing
once it reaches its maximum height and width. From this point
on it will still re-access its fitness and reproduce periodically,
as well as potentially changing the model depending on its
condition. Certain game events, such as collisions between the
exclusive radius of different specimens are meant to simulate
competition events, which will trigger further reductions on the
overall fitness. Once either it reaches its life span or the

environment stops being suitable, the plant will die and
disappear. Other adaptations were also introduced to verify that
plants are generated correctly in different environments.

To reduce response times, the Flora Evolution Algorithm
was design so that interaction cycles do not need to be
sequential allowing for jumps in interactions although
subordinated to time spans. This allows to reach average
response times of 30 seconds to simulate a population of 1000
individual specimens over a 25-earth year period.

V. CONCLUSIONS

Overall, we succeeded in developing an automated flora
behavior algorithm that can control the species full life cycle,
from generation, through propagation, and finally death. While
some factors had to be adapted due to the specificities of the
algorithms and databases created, we fulfilled the main
objectives of this study by developing a complex procedural
algorithm with real life scientific basis.

By using weighted values when creating new species data
in the database, we may have introduced some bias to the
results and artificially limit the variations of flora that will be
represented. However, and since we are dealing with
hypothetical species for a game setting, occurring in
extraterrestrial planets, we decided to prioritize player
satisfaction and familiarity against potential inaccuracies or
limitations. Additionally, since we opted to generate these
parameters and store them in a database, we can change and
tune the established rules however necessary, and gradually
delete or alter the species information, without having to
change the game files or impacting its performance.

Since the algorithms developed had objectives and
restrictions to account for, we needed a tailored algorithm that
would take the characteristics of the worlds and plant species
into account. This meant we needed to adapt from existing
studies. While we based some of our methods on Swarm
intelligence algorithms, such as [2] our approach and
requirements led us to depart somewhat from the group
communication centric behavior, that is used on such
approaches. Since our project settings revolved around
individual plant survivability, in different environments and
planets, our algorithms focus different project constraints,
which might not be as easily reproduced by strictly group
behavior mechanisms.

One possible weakness from the algorithm developed is
that most of the studies found, and used as foundation, tended
to focus on inland plant species. This means that the algorithm
might be less suitable to replicate aquatic plant behaviors. An
interesting prospect would be to analyze the differences from
aquatic and intertidal species and change the algorithm to better
simulate these types of plants. By developing a more generic
algorithm to create many plant species, some of the
specificities that different plant types have will, inevitably, not
be accurately replicated. However, doing so would certainly
increase the amount of information utilized and stored, and
increase the performance costs, that would be necessary to
process all this data.

For further work, one important addition to the species
generator algorithm would be the implementation of a growth-

rate variable generated independently for each species. This
might be an important feature to help visually differentiate
similar species. While there is such a variable in the in-game
algorithm, helping regulate and improve the behavior
algorithm, it might be also beneficial to implement this from
the start, under the species generator in the database.

More importantly, further work might be required to adapt
and improve the performance costs of applying this algorithm
in a large and widespread setting. This type of algorithm,
developed in our study, might be best suited for application in
larger plant species, for once because these are more easily
seen by the players, meaning we would be targeting the assets
performance towards the most visible. Additionally,
considering that a square kilometer of forest can represent
millions of plants, hundreds of thousands of small trees, and
numerous small scrubs, representing plant compositions is
extremely difficult [23], and minimizing the performance costs
towards the most suitable game-objects should be beneficial
[15].

Lastly, a more refined system to manage the game-models
of all the specimens, in each different development state, would
be an interesting follow-up step, which could not be achieve in
this study mainly due to time restraints. If we managed to apply
PCG techniques to generate the game assets, it could
noticeably reduce the required performance to run these types
of algorithms in a larger scale.

ACKNOWLEDGMENT

This work has been funded by national funds through FCT
- Fundação para a Ciência e a Tecnologia, I.P., under the
Project UIDB/05567/2020.

REFERENCES

[1] Sulaiman, M.; Salhi, A.; Fraga, E.S.; Mashwani, W.K.; Rashidi, M.M.
(2016). A novel plant propagation algorithm: modifications and
implementation. Sci. Int. (Lahore), 28(1):201-209.

[2] Cheng, L., Wu, X., Wang, Y. (2018). Artificial Flora (AF) Optimization
Algorithm. Applied Sciences, 8 329: 1-22.

[3] Hendrikx, M.; Meijer, S.; Vann-der-Velden, J.; Iosup, A. (2011)
Procedural Content Generation for Games: A Survey. ACM
Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 9(1), 1-22.

[4] Adler, P.B.; Smull, D.; Beard, K.H.; Choi, R.T.; Furniss, T.; Kulmatiski,
A.; Meiners, J.M.; Tredennick, A.T.; Veblen, K.E. (2018). Competition
and coexistence in plant communities: intraspecific competition is
stronger than interspecific competition. Ecology Letters, 21: 1319-1329.

[5] Hintze, C.; Heydel, F.; Hoppe, C.; Cunze, S.; König, A.; Tackenberg, O.
(2013). D3: The Dispersal and Diaspore Database – Baseline data and
statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and
Systematics, 15: 180-192.

[6] Poschlod, P.; Tackenberg, O.; Bonn, S. (2005). Plant dispersal potential
and its relation to species frequency and coexistence. In van der Maarel,
E. (Ed.), Vegetation Ecology. Blackwell, pp. 68–76.

[7] Tackenberg, O.; Stöcklin, J. (2008). Wind dispersal of alpine plant
species: a comparison with lowland species. J. Veg. Sci., 19: 109–118.

[8] Körner, C. (2003). Alpine plant life. Springer, Berlin, 2nd edition.

[9] Pellissier, L.; Fournier, B.; Guisan, A.; Vittoz, P. (2010). Plant traits co-
vary with altitude in grasslands and forests in the European Alps. Plant
Ecol., 211: 351–365.

[10] Knevel, I.C.; Bekker, R.M.; Bakker, J.P.; Klyer, M. (2003). Life-history
traits of the Northwest European flora: the LEDA database. J. Veg. Sci.,
14: 611–614

[11] Hatfield, J.L. & Prueger, J.H (2015). Temperature extremes: Effect on
plant growth and development. Weather and Climate Extremes, 10:4-10.

[12] Craine, J.M. & Dybzinski, R. (2013). Mechanisms of plant competition
for nutrients, water and light. Functional Ecology, 27: 833–840.

[13] ESA. (2020). Essential facts about the video game industry.
Entertainment Software Association (ESA). Annual Report, 2020
edition. [Online] Available at: http://www.theesa.com.

[14] Shaker, N.; Yannakakis, G.; Togelius, J. (2010): Towards Automatic
Personalized Content Generation for Platform Games. Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, Stanford. 63’- 68.

[15] Freiknecht, J. & Effelsberg, W. (2017). A Survey on the Procedural
Generation of Virtual Worlds. Multimodal Technologies and Interaction,
1, 27.

[16] Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R. (2011). A
declarative approach to procedural modeling of virtual worlds. Comput.
Graph. 35, 352–363.

[17] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich and
M. B. Mineev-Weinstein (1997). ROAMing terrain: Real-time
Optimally Adapting Meshes, Proceedings. Visualization '97, pp. 81-88.

[18] Han, G.; Liu, L.; Chan, S.; Yu, R.; Yang, Y. HySense (2017). A Hybrid
Mobile CrowdSensing Framework for Sensing Opportunities
Compensation under Dynamic Coverage Constraint. IEEE Commun.
Mag., 55: 93–99.

[19] Pornsing, C.; Sodhi, M.S.; Lamond, B.F. (2016). Novel self-adaptive
particle swarm optimization methods. Soft Comput., 20: 3579–3593.

[20] Karaboga, D. & Gorkemli, B. (2014). A quick artificial bee colony
(qABC) algorithm and its performance on optimization problems. Appl.
Soft Comput., 23: 227–238.

[21] Yang, X. S. (2012). Flower Pollination Algorithm for Global
Optimization. In Proceedings of the 11th International Conference on
Unconventional Computation and Natural Computation, Orléans,
France, 3–7 September; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 240–249.

[22] Wu, X.; Shao, H.; Wang, S.; Wang, W. (2019). A Multi-objective
Artificial Flora Optimization Algorithm. In: Song H., Jiang D. (eds)
Simulation Tools and Techniques. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, vol 295.

[23] Alsweis, M. & Deussen, O. (2006). Wang-Tiles for the Simulation and
Visualization of Plant Competition. Computer Graphics International,
pp. 1-11.

