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Abstract — A crucial aspect to game development is the ability to 

establish the player emersion in a simulated and virtual world, 

presenting engaging content and maximizing the gaming 

experience. The demand for new and hand-customized content 

keeps increasing, in playable maps that are ever expanding in 

size, without compromising quality or differentiation. The usage 

of Procedural Content Generation (PCG) allows computers to 

generate game content and produce distinguishable and unique 

instances amongst the ones generated allowing to better replicate 

reality and deliver intricate systems without the costs and time 

consumption of human intervention. 

As a key element for the appeal of many games, natural life 

exhibits both complex and distinguishable behaviors, from 

species to species as well as from individual to individual. 

Biodiversity is maintained by processes operating over broader 

spatial and temporal scales, and as such, simulating plant 

diversity is a process better suited to operate under PCG 

algorithms.  

In this study, we describe a procedural flora evolution algorithm 

that can replicate a flora species life cycle for a practical 3D game 

setting (Universe 51), using scientific knowledge to better 

reproduce such intricate behaviors. We based some part our 

approach on complex intelligence algorithms, as well as in some 

original processes targeted at our project specificities. The 

evolution algorithm starts with the end results of a flora 

generation algorithm that can create millions of different flora 

species based on selected biological parameters. This data is then 

interpreted by the evolutionary algorithm, that uses these values 

to determine each species survival chances in the surrounding 

environment. Our results were able to replicate and 

autonomously manage plant species life cycle, under a dynamic 

environment with potentially varying conditions. 

Keywords – procedural content generation; flora generation 

algorithm; flora evolution algorithm; natural life simulation. 

I.  INTRODUCTION 

Some natural phenomena, such as the survival of living 
entities and the success of some species in each environment, 
rely on Optimization and Search to overcome the constraints 
that these environments impose on them [1]. This complex 
optimization strategies make for compelling problems and are 
one of the reasons of why some algorithms are inspired by 
nature [1, 2].  

Using Procedural Content Generation is an increasingly 
popular method to develop game content. Vegetation can be 
used in many games for a realistic and thus immersive look. 

The presence of vegetation is not merely aesthetic; it may serve 
as hiding place, as raw material for inventive players, to direct 
a player towards a certain direction or reference the climate 
surrounding the player and lead to changes in gameplay [3].  

In this paper, we researched some of the most relevant 
information available, and best practices on Procedural 
Generation Technics, to develop a Flora Generation and 
Evolution Algorithm, to be applied on a real-world application, 
an in-development game named Universe 51, that allows for 
the exploration of +25 million planets in photo quality 
graphics. To do so, we opted to separate the procedure into two 
main algorithms: the first would handle flora species 
generation, and insert the data into an SQL database, and the 
second would use the generated species to populate an existing 
world, control how individual flora specimens would behave in 
the surrounding environment as well as propagate and colonize 
new areas, simulating the natural processes with real scientific 
basis. 

II. BASE ASSUMPTIONS 

A. Flora characteristics, dispersal, and Fitness 

In Nature, species survival often depends on their ability to 
adapt in various ways, whether to find food quickly or avoid 
predation. These are typically Optimization/Search problems 
that give their offspring the best chance to survive and thrive 
[1]. 

A major pressuring force in species survival is competition, 
which can be either between different species (interspecific) or 
between plants of the same species (intraspecific). To evaluate 
and understand competition [4], studies in the past two 
decades, have concluded that intraspecific competition appears 
to be significantly stronger than interspecific competition for 
most pairs of co-occurring species. Additionally, in ~30% of 
the cases analyzed, the effect of intraspecific competition was 
negative and the interspecific effect positive, a situation which 
promotes coexistence between plants of different species. 
Cases in which both inter and intraspecific effects were 
positive (~1%), or in which the intraspecific effect was 
facilitative, but the interspecific effect was competitive (~1%), 
were significantly rare [4]. 

As plants have a variety of modes to spread seeds, many 
authors accept a classification into autochory and allochory [5]. 
Autochory refers to plants that spread by themselves, and 
allochory means the plants spread through external forces [2, 
3]. While it has become widely accepted that most plant 



species are dispersed by more than one dispersal vector or 
mode [5, 6], for the scope of this paper we will consider only 
Autochory, as the software where the algorithm will be applied 
does not presently include animals, wind sources or other 
external forces that we could try to replicate in the algorithm. 

Studies have found there are significant differences in 
dispersal related to different environmental and topographic 
conditions. For example, wind dispersal is more effective in an 
alpine landscape, with heavy turbulences, compared to lowland 
conditions [7]. Altitude has been known to be a significant 
conditioner in many life aspects of flora species [8, 9]. As 
altitude increases, the climate shifts toward more stressful 
conditions for plant growth: lower mean temperatures, higher 
precipitation, longer snow cover and, thus, a shorter growing 
season, lower atmospheric pressure and higher solar radiation 
that induces high temperatures at the ground level [8, 9].  

Considering those factors, we introduced Altitude as a 
limiting filter to the plant species generated, such as restricting 
taller plants to lower altitude habitats. Studies observed that 
trees cannot grow at high altitude, because of cold temperature 
or lack of available moisture. This would somewhat mimic the 
real world as plants that share the same habitat often exhibit 
similar characteristics (i.e., morphology, reproduction, diaspore 
dispersal) [10], generally identified as biological traits. This 
kind of ‘‘filter’’ phenomenon occurs in nature and removes the 
species that lack the necessary biological traits [9, 10].  

Some species have also developed different strategies to 
deal with specific survival optimization problems [1]. The 
temperature surrounding the plant is known to affect the rate of 
plant growth and development, with each species having a 
specific temperature range comprising of a minimum, 
maximum, and optimum temperature [11]. One other factor 
that can limit plant growth is the concentration of CO2, but 
since the pool of atmospheric CO2 is so large and mixed, 
plants do not heavily compete for CO2 in our planet [12]. 
Using this kind of limitations can improve development of 
game assets based on natural processes, enabling developers 
with more levers of control to differentiate between different 
planets or realities, creating a sense of novelty and discovery. 

B. Procedural generation in games 

Computer games are increasingly present in our modern 
day lives, with hundreds of millions of players joining daily 
and around the world, to play a variety of titles [3]. In 2020, 
according to the US Entertainment Software Association 
(ESA), 75% of all U.S. households have at least one person 
who plays while, in total, 64% of all U.S. adults and 70% of 
those under 18 regularly play video games [13]. In the context 
of games and simulations, complex and realistic virtual worlds 
gained more and more importance [14, 15]. 

In contrast to traditional methods of content production, 
Procedural Content Generation for games (PCG) consists of the 
application of computers algorithms to generate game content, 
distinguishing between instances generated, and generating 
entertaining instances for the players [3]. As a definition, [16] 
classified procedural content generation as “any kind of 
automatically generated asset based on a limited set of user-
defined input parameters”, sometimes also referred as 

amplification algorithms. Usage of PCG techniques has been 
around the game industry, in various forms, for decades [14]. 

Using PCG enables making complex game worlds, with 
limited time, without putting a large burden on the game 
content designers [3, 14]. Additionally, Procedural content may 
increase the replayability of a game, by changing levels or 
quests and offering new experiences in each new session [14, 
15], effectively extending the life span of a title. PCG has also 
influenced the creation of “serious games”, which converge a 
learning experience in addition to the entertainment value in 
classic games. Their value in education comes from the 
changing environments that enable students not only repeat 
knowledge they have learned, but also apply their abilities to 
new and changing situations [15]. 

One aspect to retain is the tradeoff that occurs when 
generating procedural content. When an algorithm returns a 
particular outcome (e.g., a natural-looking forest), to be able to 
generate more variations of assets, textures in higher 
resolution, more detailed meshes or a denser planting, it 
inevitably requires more processing power, more memory 
and/or more storage [15]. For this reason, and depending on the 
desired outcome, the developer has to establish a trade between 
either performance or realism, to reach the optimal outcome for 
the given system or the requirements for the virtual world [15]. 
Generating most types of game content necessitates from a 
computer not only computational power, but also to access the 
metadata and technical values of the generated instances [3]. 

Considering all this, and since virtual worlds may require 
millions of square meters, it is indispensable to establish a way 
to optimize performance for the rendering process. One 
possible approach is described in [17] with the usage of Levels 
of Details (LOD), which should be used to add more terrain 
detail in important and frequently visited areas of a terrain that 
are close to the user, and to reduce detail in less important 
regions, e.g., in far mountain areas. 

Lastly, Random Number Generators (RNG) can be used to 
produce a deterministic and periodic sequence of (pseudo) 
randomized numbers. While their functionality is referenced in 
many publications dealing with PCG, not all researchers agree 
with their omnipresence in PCG, with some authors defending 
that pure random generation would result in chaos [15]. 

C. Complex intelligence algorithms: 

In scientific and engineering areas, some problems require 
the search for an optimal solution given a large and mutating 
space. For these complex, nonlinear, or discrete optimization 
challenges, existing traditional optimization algorithms, such as 
Newton’s method and the Gradient Descent method, may have 
a hard time finding a solution [2, 18]. For such cases, some 
widely used intelligence algorithms include the particle swarm 
optimization (PSO) algorithm [19], artificial bee colony (ABC) 
algorithm [20], the flower pollination algorithm (FPA) [21], 
and the Plant Propagation Algorithm (PPA) [1] provide 
examples of some of the best solutions available.  

Swarm intelligence algorithms, such as ABC and PSO, are 
based on the interaction, communication, and cooperation of 
organisms in individuals of a group. While behavior and 
intelligence of everyone is somewhat limited and simple, it can 



produce valuable overall capacity by interaction and 
cooperation on the biological group [2, 22]. Different studies 
on this area have been developed recently, focusing as well on 
practical problems that are required to satisfy multiple 
objectives, with conflicting natures towards each other, using 
Multi-Objective Optimization algorithms [22]. 

We based some of our approach on the Artificial Flora (AF) 
algorithm, as described in [2]. In developing the AF algorithm, 
its authors took inspiration in the reproduction and the 
migration of flora. In their study, the principle is that original 
plants spread seeds in a possible radius around, with the 
propagation distance considering the previous original plants.  

In plant communities, competition for resources has been 
associated with generating stress for plants, and to be important 
for determining species distributions, as well as their evolution 
[12]. The three main classes of resources that limit plant 
growth are nutrients, water, and light, which are all resources 
for which individual plants compete. Soil properties are 
affected by numerous different nutrients, which limit plant 
growth in different ways [12].  

An environmental fitness variable can be used to determine 
whether the seeds can survive or not, and consequently, if the 
offspring plant cannot adapt to the environment, it will die. If a 
seed survives, it will become original plants and spread seeds 
[2]. Using these principles, through multi-generational 
propagation, the flora will migrate to a more suitable area, 
completing the task of finding the optimal growth environment 
through the evolution, extinction, and rebirth of individual flora 
specimens. 

III.  METHODS AND DEVELOPMENT 

A.  Flora Generation Algorithm 

The starting point of the study was to create an algorithm 
that, based on selected biological parameters, could generate 
any desired number of new species, all different from one 
another and insert their data into an SQL database. This 
database contains all the pertinent biological data of the 
species, such as: the optimal temperature and altitude, the 
preferred gas or gases, the prohibited gas or gases, the 
exclusive radius an individual would take, the maximal width 
and height for the species, the longevity, the average 
reproduction cycle, as well as, for visualization purposes, 
information about the materials composing the species model. 

Since we are dealing with a potential large volume of new 
and alien species, we chose to base the attribution of these 
parameters by generating random numbers, and limiting their 
extremes with known and existing examples, to maintain some 
degree of fidelity and familiarity with the player. Additionally, 
the number generators were coupled with different functions, 
that change the frequency of values to a pattern more closely 
resembling for our reality. As an example, when determining 
the optimal temperature, the algorithm is weighted to generate 
less values close to the extremes.  

As this algorithm is executed, some variables (preferred 
and prohibited gas, and reproduction cycle) are attributed in the 
beginning of the process, as they are the most difficult to 
extrapolate from plant examples on our planet. After this, a 

plant type is randomly established (from algae, moss, grass, 
shrub, or tree), with the remaining variables being generated 
(height, width, longevity, optimal temperature, optimal altitude, 
etc.) loosely based on what is seen on our planet. This allows 
us to create new and different species, while still maintaining 
elements that hopefully are still recognizable and familiar to 
players. By connecting characteristics like height and optimal 
altitude to the type of plant, we can also maintain the filter 
effect from altitude, that was mentioned in the introduction. 

B.  Flora Evolution Algorithm 

After a planet is generated, a variable set of existing species 
will be assigned to populate it from the established database. 
For each species assigned, a new flora actor, with the 
corresponding biological values, will be randomly located in 
the map.   

From the Flora Generation Algorithm), we can extract 
several variables that will determine the species physiological 
characteristics. Some of these have a direct effect on the in-
game plants, being directly translated into the assets as soon as 
they are created. such as:  

• Max width, Max Height and Exclusive radius – 
assigned to define the plant mesh/model. 

• Longevity – used to establish the Actor’s life span. 

• Reproduction Cycle – applied directly to the algorithm. 

• Flora Type – constrains the areas for initial spawning. 

These are variables that have a direct effect on the plant 
species progression/regression in the different “ecosystems” 
observed in each distinct planet. Other species characteristics 
are used to express their physiological needs, having a direct 
correlation to the species presence or absence in the current 
world, and as such, are used to determine the species survival 
fitness. Specifically: 

• Optimal temperature. 

• Optimal altitude. 

• Preferred atmospheric gas percentage. 

• Prohibited atmospheric gas percentage.  

All these variables will affect the species survivability, and 
as so are considered when determining the fitness equation for 
each different plant species.  

In [2], the authors establish the individual fitness F using 
the equation: 

 𝐹 = |√
𝐹(𝑃𝑖,𝑗×𝑚

′ )

𝑓𝑚𝑎𝑥
| × 𝑄𝑥

(𝑗×𝑚−1)
 ()    +   =  () () 

where 𝐹(𝑃𝑖,𝑗×𝑚
′ )   is the fitness for plant offspring in 

position j, at interaction i, with m representing the number of 
seeds that one plant can propagate in each interaction, fmax is 
the maximum fitness of the flora in the current generation, and 

𝑄𝑥
(𝑗×𝑚−1)

is a value between 0 and 1 where Qx is the selective 
probability. 



Since in this paper is determined fitness based on the 
distance between the offspring and the original plant, we opted 
to adapt this equation by changing how to determine the fitness 
of current solution using the variables mentioned previously 
(temperature, altitude, preferred gas percentage and prohibited 
gas percentage). Since these variables vary wildly in order of 
greatness (altitudes can vary in the thousands while gas 
percentages at maximum vary in the tens), we decided to apply 
some conversions to keep the potential score consistent. 

Ultimately, the equation utilized to calculate the fitness 
score F is: 

 𝐹 = |√
𝑓𝑚𝑎𝑥−(∆𝑡+0,05∆𝑎+2,25𝑊𝑔+2𝐵𝑔)

𝑓𝑚𝑎𝑥
| × 𝑟𝑎𝑛𝑑(0, 1) ()    +   =  () () 

where fmax is the maximum fitness of the flora in the current 
generation, ∆t is the difference between the surrounding 
environmental temperature and the species Optimal 
Temperature; ∆a is the difference between the local altitude 
and the species Optimal Altitude; Wg is the prohibited gas 
excess (difference between the max percentage tolerated and 
the local percentage of the prohibited atmospheric gas), Bg is 
the preferred gas deficit (difference between the local 
percentage of the preferred atmospheric gas and the minimal 
percentage required) and rand(0,1) denotes the independent 
uniformly distributed number in (0,1). 

Lastly, since our algorithm operates under the principle that 
only successful offspring are generated, we shifted the selective 
probability on the equation for a randomized element, that still 
varies between 0 and 1, and which ensures that the 
survivability does not rely strictly on the value of the fitness. 
This allowed us to emulate that different specimens have each 
its own fitness score, and even when in proximity they may 
have different “environmental” pressures. 

After estimating the fitness, each plant will generate 
descendancy using the same propagation method as in [2], at a 
distance D, from the original plant, utilizing the equation: 

 𝐷 = 𝑑1 × 𝑟𝑎𝑛𝑑(0,1) +  𝑑2 × 𝑟𝑎𝑛𝑑(0,1) ()    +   =  () () 

Where d1 is the propagation distance of grandparent plant, 
d2 is the propagation distance of the parent plant and rand(0,1) 
denotes the independent uniformly distributed number in (0,1). 

IV.  RESULTS 

The full study workflow consists in generating a desired 
number of new species using the Flora Generation Algorithm, 
thus creating a new set of species available to be used from that 
point forward. The higher the number of species desired, the 
bigger will be the response time necessary to generate all the 
required information, with an average time obtained of around 
11 seconds for every 5000 species generated. 

Using then, the Flora Evolution Algorithm, we can simulate 
a simplified life cycle for each specimen of each generated 
plant species, using both information from the generation 
algorithm and information from the location of each specimen, 
regardless of any player interactions. 

This way, the flora evolution algorithm works completely 
independent from the player, managing the processes of 
growth, reproduction, decay, and death, of each individual 
specimen spawned into the world, independently from each 
other. All the processes are determined according to the fitness 
variable, calculated using the species and the environmental 
characteristics. The following figure illustrates how some of 
the described process develop in a life- cycle for a single plant 
specimen:  

 

Figure 1.  Plant specimen progression, through different phases of 

development. 

From the image above we can observe a few different 
events: 

1. Two healthy plants, shortly after generation.  

2. Plants after a few cycles of growth.  

3. Plants near their max size. The one closest to the player 
changed its model aspect to indicate a fitness 
reduction.  

4. The furthest plant (healthy) entered the propagation 
phase and originated two new individuals (red 
indicators).  

5. The new plants grow.  

6. One of the newest plants entered the exclusive radius 
(white circle) of another and was ultimately eliminated 
through competition. 

The full process starts when plant specimens are generated, 
with a shortened height (depending on the established growth 
rate) and developing further through time if the conditions are 
suitable for the species. During repeated time cycles, the 
algorithm estimates the plant fitness, using (1) and oversees the 
growth and development of the individual in relation to the 
environment. As the plant and its model grows, so does the 
exclusive radius (observable only during development, as a 
white circle under the plant). 

If the conditions are suitable, the plant only stops growing 
once it reaches its maximum height and width. From this point 
on it will still re-access its fitness and reproduce periodically, 
as well as potentially changing the model depending on its 
condition. Certain game events, such as collisions between the 
exclusive radius of different specimens are meant to simulate 
competition events, which will trigger further reductions on the 
overall fitness. Once either it reaches its life span or the 



environment stops being suitable, the plant will die and 
disappear. Other adaptations were also introduced to verify that 
plants are generated correctly in different environments. 

To reduce response times, the Flora Evolution Algorithm 
was design so that interaction cycles do not need to be 
sequential allowing for jumps in interactions although 
subordinated to time spans. This allows to reach average 
response times of 30 seconds to simulate a population of 1000 
individual specimens over a 25-earth year period. 

V.  CONCLUSIONS  

Overall, we succeeded in developing an automated flora 
behavior algorithm that can control the species full life cycle, 
from generation, through propagation, and finally death. While 
some factors had to be adapted due to the specificities of the 
algorithms and databases created, we fulfilled the main 
objectives of this study by developing a complex procedural 
algorithm with real life scientific basis. 

By using weighted values when creating new species data 
in the database, we may have introduced some bias to the 
results and artificially limit the variations of flora that will be 
represented. However, and since we are dealing with 
hypothetical species for a game setting, occurring in 
extraterrestrial planets, we decided to prioritize player 
satisfaction and familiarity against potential inaccuracies or 
limitations. Additionally, since we opted to generate these 
parameters and store them in a database, we can change and 
tune the established rules however necessary, and gradually 
delete or alter the species information, without having to 
change the game files or impacting its performance. 

Since the algorithms developed had objectives and 
restrictions to account for, we needed a tailored algorithm that 
would take the characteristics of the worlds and plant species 
into account. This meant we needed to adapt from existing 
studies. While we based some of our methods on Swarm 
intelligence algorithms, such as [2] our approach and 
requirements led us to depart somewhat from the group 
communication centric behavior, that is used on such 
approaches. Since our project settings revolved around 
individual plant survivability, in different environments and 
planets, our algorithms focus different project constraints, 
which might not be as easily reproduced by strictly group 
behavior mechanisms.   

One possible weakness from the algorithm developed is 
that most of the studies found, and used as foundation, tended 
to focus on inland plant species. This means that the algorithm 
might be less suitable to replicate aquatic plant behaviors. An 
interesting prospect would be to analyze the differences from 
aquatic and intertidal species and change the algorithm to better 
simulate these types of plants. By developing a more generic 
algorithm to create many plant species, some of the 
specificities that different plant types have will, inevitably, not 
be accurately replicated. However, doing so would certainly 
increase the amount of information utilized and stored, and 
increase the performance costs, that would be necessary to 
process all this data.  

For further work, one important addition to the species 
generator algorithm would be the implementation of a growth-

rate variable generated independently for each species. This 
might be an important feature to help visually differentiate 
similar species. While there is such a variable in the in-game 
algorithm, helping regulate and improve the behavior 
algorithm, it might be also beneficial to implement this from 
the start, under the species generator in the database.  

More importantly, further work might be required to adapt 
and improve the performance costs of applying this algorithm 
in a large and widespread setting. This type of algorithm, 
developed in our study, might be best suited for application in 
larger plant species, for once because these are more easily 
seen by the players, meaning we would be targeting the assets 
performance towards the most visible. Additionally, 
considering that a square kilometer of forest can represent 
millions of plants, hundreds of thousands of small trees, and 
numerous small scrubs, representing plant compositions is 
extremely difficult [23], and minimizing the performance costs 
towards the most suitable game-objects should be beneficial 
[15]. 

Lastly, a more refined system to manage the game-models 
of all the specimens, in each different development state, would 
be an interesting follow-up step, which could not be achieve in 
this study mainly due to time restraints. If we managed to apply 
PCG techniques to generate the game assets, it could 
noticeably reduce the required performance to run these types 
of algorithms in a larger scale. 
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